Chapter 6- Pseudorandom numbers and stream cipher

Random numbers play an important role in the use of encryption for various network security applications, such as:

- Generating session keys,
- Generation of keys for the RSA public-key encryption algorithm
- Generation of a bit stream for symmetric stream encryption
- The following two criteria are used to validate that a sequence of numbers is random:
1- Uniform distribution: the frequency of occurrence of ones and zeros should be approximately equal.
2- Independence: No one subsequence in the sequence can be inferred from the others.

Pseudorandom number generators (PRNGs)

- Cryptographic applications typically make use of algorithmic techniques for random number generation.
- These algorithms are deterministic and therefore produce sequences of numbers that are not statistically random.
- However, if the algorithm is good, the resulting sequences will pass many reasonable tests of randomness.
- Such numbers are referred to as pseudorandom numbers.
- a PRNG takes as input a fixed value, called the seed, and produces a sequence of output bits using a deterministic algorithm.
- Typically there is some feedback path by which some of the results of the algorithm are fed back as input.

PRNG Requirements

The basic requirement is that an adversary who does not know the seed is unable to determine the pseudorandom string.

RANDOMNESS

In terms of randomness, the requirement for a PRNG is that the generated bit stream appear random even though it is deterministic.

- If the PRNG exhibits randomness on the basis of multiple tests, then it can be assumed to satisfy the randomness requirement.
1- Frequency test: The purpose of this test is to determine whether the number of ones and zeros in a sequence is approximately the same as would be expected for a truly random sequence.

2- Runs test: The purpose of the runs test is to determine whether the number of runs of ones and zeros of various lengths is as expected for a random sequence.
3- Maurer's universal statistical test: The purpose of the test is to detect whether or not the sequence can be significantly compressed without loss of information. A significantly compressible sequence is considered to be non-random.

UNPREDICTABILITY

A stream of pseudorandom numbers should exhibit two forms of unpredictability:
1- Forward unpredictability: If the seed is unknown, the next output bit in the sequence should be unpredictable in spite of any knowledge of previous bits in the sequence.
2- Backward unpredictability: It should also not be feasible to determine the seed from knowledge of any generated values.

- For cryptographic applications, the seed that serves as input to the PRNG must be secure.
- Because the PRNG is a deterministic algorithm, if the adversary can deduce the seed, then the output can also be determined.
- Therefore, the seed must be unpredictable.
- In fact, the seed itself must be a random or pseudorandom number.

Algorithm Design of PRNG

Three broad categories of cryptographic algorithms are commonly used to create PRNGs:

1- Symmetric block ciphers.
2- Asymmetric ciphers.
3- Hash functions and message authentication codes.

Linear Congruential Generators

The algorithm is parameterized with four numbers, as follows:

m	the modulus	$m>0$
a	the multiplier	$0<a<m$
c	the increment	$0 \leq c<m$
X_{0}	the starting value, or seed	$0 \leq X_{0}<m$

The sequence of random numbers is obtained via the following iterative equation:

$$
X_{n+1}=\left(a X_{n}+c\right) \bmod m
$$

- If a, c and m are integers, then this technique will produce a sequence of integers with each integer in the range $x=0 \ldots m-1$.
- We would like m to be very large, so that there is the potential for producing a long series of distinct random numbers.
- The generated sequence should pass the following tests:
T_{1} : The function should be a full-period generating function. That is, the function should generate all the numbers between 0 and m before repeating.
T_{2} : The generated sequence should appear random.
T_{3} : The function should implement efficiently with 32-bit arithmetic.
- if is prime and $c=0$, then for certain values of a the period of the generating function is $m-1$,
- a convenient prime value of m is $2^{31}-1$, so the generating function become:

$$
X_{n+1}=\left(a X_{n}\right) \bmod \left(2^{31}-1\right)
$$

- some a values (such as 16807)has passed the three test.
- This generator is widely used and has been subjected to a more thorough testing than any other PRNG. It is frequently recommended for statistical and simulation works.
- The main problem with that PRNG is that its deterministic, which depends on the initial random value X_{0}. So, if the opponent know some parts of the sequence, he can deduce the future parts.

Blum Blum Shub Generator

- A popular approach to generating secure pseudorandom numbers is known as the Blum, Blum, Shub (BBS) generator.
- The procedure is as follows.
- First, choose two large prime numbers, and that both have a remainder of 3 when divided by 4.That is,

$$
p \equiv q \equiv 3(\bmod 4)
$$

- For example, the prime numbers $p=7$ and $q=11$.
- Let $n=p q$. Next, choose a random number s, such that s is relatively prime to n.
- Then the BBS generator produces a sequence of bits according to the following algorithm:

$$
\begin{aligned}
\mathrm{X}_{0} & =\mathrm{s}^{2} \bmod n \\
\text { for } i & =1 \text { to } \infty \\
\mathrm{X}_{i} & =\left(\mathrm{X}_{i-1}\right)^{2} \bmod n \\
\mathrm{~B}_{i} & =\mathrm{X}_{i} \bmod 2
\end{aligned}
$$

Example: $n=192649=383 * 503$ and $s=101355$.

\boldsymbol{i}	$\boldsymbol{X}_{\boldsymbol{i}}$	$\boldsymbol{B}_{\boldsymbol{i}}$				
0	20749					
1	143135	1				
2	177671	1				
3	97048	0				
4	89992	0				
5	174051	1				
6	80649	1				
7	45663	1				
8	69442	0				
9	186894	0				
10	177046	0	\quad	\boldsymbol{i}	$\boldsymbol{X}_{\boldsymbol{i}}$	$\boldsymbol{B}_{\boldsymbol{i}}$
:---	---:	:---:				
11	137922	0				
12	123175	1				
13	8630	0				
14	114386	0				
15	14863	1				
16	133015	1				
17	106065	1				
18	45870	0				
19	137171	1				
20	48060	0				

- BBS generator passes the next-bit test
- A pseudorandom bit generator is said to pass the next-bit test if there is not a polynomial-time algorithm that, on input of the first bits of an output sequence, can predict the bit with probability significantly greater than $1 / 2$.
- The security of BBS is based on the difficulty of factoring n. That is, given n, we need to determine its two prime factors p and q

PSEUDORANDOM NUMBER GENERATION USING A BLOCK CIPHER

- A popular approach to PRNG construction is to use a symmetric block cipher (such as DES or AES) as the heart of the PRNG mechanism.
- For any block of plaintext, a symmetric block cipher produces an output block that is apparently random.
- Two approaches that use a block cipher to build a PNRG have gained widespread acceptance:
- the CTR mode and
- the OFB mode
- The seed consists of two parts:
- the encryption key value and
- a value that will be updated after each block of pseudorandom numbers is generated.

The CTR algorithm for PRNG can be summarized as follows.

```
while (len (temp) < requested_number_of_bits) do
    V = (V + 1) mod 2 2 
    output_block = E(Key, V)
    temp = temp || ouput_block
```

The OFB algorithm can be summarized as follows.

```
while (len (temp) < requested_number_of_bits) do
    V = E(Key, V)
    temp = temp || V
```


STREAM CIPHERS

A typical stream cipher encrypts plaintext one byte at a time, although a stream cipher may be designed to operate on one bit at a time or on units larger than a byte at a time.

- a key is input to a pseudorandom bit generator that produces a stream of 8-bit numbers that are apparently random.
- The output of the generator, called a keystream, is combined one byte at a time with the plaintext stream using the bitwise exclusive-OR (XOR) operation.

Figure 7.5 Stream Cipher Diagram

- The stream cipher is similar to the one-time pad discussed in Chapter 1.
- The difference is that a one-time pad uses a genuine random number stream, whereas a stream cipher uses a pseudorandom number stream.

RC4

- RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security.
- It is a variable key size stream cipher with byte-oriented operations.
- The algorithm is based on the use of a random permutation.
- RC4 is used in:
- Secure Sockets Layer/Transport Layer Security (SSL/TLS) standards
- Wired Equivalent Privacy (WEP) protocol
- WiFi Protected Access (WPA) protocol
- RC4 was kept as a trade secret by RSA Security, it revealed in 1994.
- A variable- length key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256 -byte state vector S, with elements $S[0], S[1], \varepsilon, S[255]$.
- At all times, contains a permutation of all 8 -bit numbers from 0 through 255.
- For encryption and decryption, a byte k is generated from S by selecting one of the 255 entries in a systematic fashion.
- As each value of is generated, the entries in S are once again permuted.

```
/* Initialization */
for i = 0 to 255 do
S[i] = i;
T[i] = K[i mod keylen];
```

```
/* Initial Permutation of s */
j = 0;
for i = 0 to 255 do
    j = (j + S[i] + T[i]) mod 256;
Swap (S[i], S[j]);
/* Stream Generation */
i, j = 0;
while (true)
    i = (i + 1) mod 256;
    j = (j + S[i]) mod 256;
Swap (S[i], S[j]);
t = (S[i] + S[j]) mod 256;
k = S[t];
```

